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Abstract. The convolutional neural network (CNN) is a promising technique to detect breast cancer based
on mammograms. Training the CNN from scratch, however, requires a large amount of labeled data. Such
a requirement usually is infeasible for some kinds of medical image data such as mammographic tumor images.
Because improvement of the performance of a CNN classifier requires more training data, the creation of new
training images, image augmentation, is one solution to this problem. We applied the generative adversarial
network (GAN) to generate synthetic mammographic images from the digital database for screening mammog-
raphy (DDSM). From the DDSM, we cropped two sets of regions of interest (ROIs) from the images: normal and
abnormal (cancer/tumor). Those ROIs were used to train the GAN, and the GAN then generated synthetic
images. For comparison with the affine transformation augmentation methods, such as rotation, shifting, scaling,
etc., we used six groups of ROIs [three simple groups: affine augmented, GAN synthetic, real (original), and
three mixture groups of any two of the three simple groups] for each to train a CNN classifier from scratch.
And, we used real ROIs that were not used in training to validate classification outcomes. Our results show
that, to classify the normal ROIs and abnormal ROIs from DDSM, adding GAN-generated ROIs in the training
data can help the classifier prevent overfitting, and on validation accuracy, the GAN performs about 3.6% better
than affine transformations for image augmentation. Therefore, GAN could be an ideal augmentation approach.
The images augmented by GAN or affine transformation cannot substitute for real images to train CNN classifiers
because the absence of real images in the training set will cause over-fitting. © 2019Society of Photo-Optical Instrumentation
Engineers (SPIE) [DOI: 10.1117/1.JMI.6.3.031411]
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1 Introduction
Breast cancer is the second leading cause of death among US
women and will be diagnosed in about 12% of them.1,2 The
commonly used mammographic detection based on com-
puter-aided detection (CAD) methods can improve treatment
outcomes for breast cancer and increase survival times.3 These
traditional CAD tools, however, have a variety of drawbacks
because they rely on manually designed features. The process
of handcrafted feature design can be tedious, difficult, and
nongeneralizable.4 In recent years, developments in machine
learning have provided alternative methods to CAD for feature
extraction; one is to learn features from whole images directly
through a convolutional neural network (CNN).5,6 Usually,
training the CNN from scratch requires a large number of
labeled images;7 for example, the AlexNet (a classical CNN
model) was trained by using about 1.2 million labeled
images.8 For some kinds of medical image data, such as mam-
mographic tumor images, it is difficult to obtain a sufficient
number of images to train a CNN classifier because the true pos-
itives are scarce in the datasets and expert labeling is expensive.9

The shortcomings of having an insufficient number of images to
train a classifier are well known,8,10 so it is worthwhile to exam-
ine image augmentation as a way to create new training images
and thus to improve the performance of a CNN classifier.

Previous approaches to image augmentation used original
images modified by rotation, shifting, scaling, shearing, and/
or flipping. We name the original images ORG images, and the
images augmented by affine transformation AFF images in the
rest of this paper. The potential problem with such processing is
that slightly changed images are similar to original ones; they
may not be used as new training images to improve the perfor-
mance of a CNN classifier. Large changes, on the other hand,
may change the structure or pattern of objects in training images
and degrade the performance of the classifier. An alternative
image augmentation method is to generate synthetic images
using the features extracted from original images. These gener-
ated images are not exactly like the original ones but could keep
the essential features, structures, or patterns of the objects in
original images. For this purpose, the generative adversarial
network (GAN) is a good candidate for augmenting the training
dataset. As with CNN, GAN is a neural network-based learning
method introduced by Goodfellow et al.,11 and it is a state-
of-the-art technique in the field of deep learning.12 GAN has
many applications in the field of image processing, for example,
image translation,13,14 object detection,15 super-resolution,16

and image blending.17 Recently, various GANs are also devel-
oped for the medical imaging, such as GANCS18 for MRI
reconstruction, SegAN,19 DI2IN,20 and SCAN21 for medical
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image segmentation. In our previous work,22 GAN images are
the augmented images generated from GAN.

To compare the performances of GAN images with AFF
images for image augmentation, we first cropped the regions
of interest (ROIs) from images in the digital database for screen-
ing mammography (DDSM)23 database as the original (ORG)
ROIs. Second, by using these ORG ROIs, we applied GAN to
generate the same number of GAN ROIs. We also used ORG
ROIs to generate the same number of AFF ROIs. Then, we used
six groups of ROIs: GAN ROIs, AFF ROIs, ORG ROIs, and
three mixture groups of any two of the three simple ROIs to
train a CNN classifier from scratch for each group. We used
the remainder of the ORG ROIs (that were never used in
augmentation and training) to validate classification outcomes.
Our results demonstrate that to classify the normal ROIs and
abnormal ROIs from DDSM, adding GAN ROIs to the training
data can improve classification performance and the improve-
ment is (about 3.6%) better than adding AFF ROIs. The maxi-
mum validation accuracy for training by only GAN ROIs is
about 80%; it shows that the synthetic ROIs generated from
a GAN can retain some important features, structure, or patterns
from ORG ROIs. Since GAN performs better than affine trans-
formation, GAN could be a good augmentation option.

2 Methods

2.1 Mammogram Databases and Image
Preprocessing

Mammography is the process of using low-energy x-rays to
examine the human breast for diagnosis and screening. There
are two main orientations for acquisition of the x-ray images: the
cranio-caudal (CC) view and the mediolateral-oblique (MLO)
view (Fig. 1). The goal of mammography is the early detection
of breast cancer,24 typically through detection of masses or
abnormal regions from the x-ray images. Usually, such abnor-
mal regions are spotted by doctors or expert radiologists. In this
study, we used mammograms from the DDSM.23 It is a mammo-
graphic images resource used widely by researchers in mammo-
graphic image analysis. It is a collaborative effort between
Massachusetts General Hospital, Sandia National Laboratories,
and the University of South Florida Computer Science and
Engineering Department. The DDSM database contains ∼2620
mammograms in total: 695 normal mammograms, 1925 abnor-
mal mammograms (914 malignant/cancers, 870 benign, and
141 benign without callback) with locations and boundaries of

abnormalities. Each case includes four images representing the
left and right breasts in CC and MLO views.

We downloaded all mammographic images from DDSM’s
official website.25 Images in DDSM are compressed in LJPEG
format. To decompress and convert these images, we used the
DDSM utility.26 We converted all images in DDSM to PNG
format. DDSM describes the location and boundary of actual
abnormality by chain-codes, which are recorded in OVERLAY
files for each breast image containing abnormalities. The DDSM
utility also provides the tool to read boundary data and display
them for each image having abnormalities. Since the DDSM
utility tools run on MATLAB, we used it to implement all pre-
processing tasks. We used the ROIs instead of entire images to
train CNN classifiers. These ROIs are cropped rectangle-shape
images and obtained by:

• For abnormal ROIs from images containing abnormal-
ities, they are the minimum rectangle-shape areas sur-
rounding the whole given ground-truth boundaries.

• Normal ROIs were cropped from the contralateral breast;
the region was the same size and in the corresponding
location as the tumor on the ipsilateral side. If both left
and right breasts had abnormal ROIs and their locations
overlapped, we discarded this sample. Since in most cases
only one breast had a tumor, and the area and shape of the
left and right breasts were similar, normal and abnormal
ROIs had similar black background areas and scaling.

The selected ROIs for this work have no black background
areas, the shapes are close to square (width-height ratio <1.2) and
the sizes are larger than 320 × 320 pixels (to avoid upsampling).
The sizes of abnormal ROIs vary with abnormality boundaries.
Since the CNN requires all input images to be one specific size
and the usual inputs for CNN are RGB images (images in DDSM
are grayscale), we resized the ROIs by resampling and converted
them to RGB (three-layer cubes) by duplication (Fig. 2). These
images cropped from mammogram are ORG ROIs.

2.2 Image Augmentation by Affine Transformation

The image augmentation by affine transformations that we
applied on ORG ROIs is: rotation, width shifting, height

CC view MLO view

Fig. 1 Mammography in CC and MLO views.

(c)

(b) (a)

Fig. 2 (a) A mammographic image from DDSM rendered in gray-
scale; (b) cropped ROI by the given truth abnormality boundary; and
(c) convert gray to RGB image by duplication.
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shifting, shearing, scaling, horizontal flipping, and vertical flip-
ping. All transformations were applied randomly and some are
in defined ranges. The range of rotation was 0 deg 30 deg and
width shifting, height shifting, shearing, and scaling were 0% to
20% according to the total image size. Since the input image size
and position must in general change after affine transformations,
we used padding (filling) points outside the boundaries to main-
tain the size of the output image. There are three commonly used
padding methods: set a constant value for all pixels outside the
boundaries, copy the values at the nearest pixel on the bounda-
ries, and reflect the image around the boundaries. Figure 3
shows the results of the three padding methods. We will choose
to use the padding method that can obtain the best classification
accuracy.

2.3 Image Augmentation by GAN

The GAN is a neural-network-based generative model that
learns the probability distribution of real data and creates simu-
lated data samples with a similar distribution (Fig. 4). Formally,
in d-dimensional space, for x ∈ Rd, y ¼ pdataðxÞ is a mapping
from x to real data y. We create a neural network called the gen-
erator G to simulate this mapping. If sample y comes from pdata,
it is a real one; if sample z comes from G, it is a synthetic one.
Another neural network, the discriminator D, is used to detect
whether a sample is real or synthetic. Ideally, DðyÞ ¼ 1;
DðzÞ ¼ 0. The two neural networks G and D compose the

GAN. We can find G and D by solving the two-player minimax
game,11 with value function VðG;DÞ:

EQ-TARGET;temp:intralink-;e001;326;596min
G

max
D

VðG;DÞ ¼ Eflog D½pdataðxÞ�g
þ Eðlogf1 −D½GðxÞ�gÞ: (1)

This min-max problem has a global optimum (Nash equilib-
rium) solution for GðxÞ ¼ pdataðxÞ. That is the goal: to find the
distribution of real data. At equilibrium, the discriminator D can
no longer distinguish the real from the synthetic sample, where
DðyÞ ¼ DðzÞ ¼ 0.5. Synthetic samples can be generated from
G by changing the input x. In this study, the input x for G was a
noise vector having 100 elements from a Gaussian distribution
∼Nð0;1Þ. The key point of a well-trained GAN is that it can gen-
erate seemingly real data samples from noise vectors. To train a
GAN, we used a limited number of real samples. Ideally, GAN
could generate unlimited different synthetic samples.

To implement GAN, we built the generator and discriminator
neural networks. The details about their structures are shown in
Table 1. The generator consisted of four upsampling layers to
double the size of the image and five convolutional layers. The
activation function for each layer was the ReLU function27

except the last one for output, which was a tanh function.
The function of the generator is to transform a 100-length vector
to a 320 × 320 × 3 image. The input of the discriminator is a
320 × 320 × 3 image and its output is a value between 0 and 1,

Input image Constant Nearest Reflect

Affine Transformation

Fig. 3 The three affine transformations.

Fig. 4 The principle of GAN.
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where “0” indicates that D has decided that the image is syn-
thetic, and “1” that the image is real. As with a typical CNN, the
discriminator had four convolutional layers with max-pooling
layers and one fully connected (FC) layer. The activation func-
tion for each convolutional layer was also the ReLU function
and the last one for output was a sigmoid function, which
mapped the output value to the range of [0, 1].

The notation Conv_3-32 means there are 32 convolutional
neurons (units) and the filter size in each unit is 3 × 3-pixel
(height × width) in this layer. MaxPool_2 means a max-pooling
layer with the filters defined by a 2 × 2-pixel window, stride 2.

FC_n means a fully connected layer having n units. The dropout
layer28 randomly set a fraction rate of input units to 0 for the
next layer at every updating during training; it helped the net-
works avoid overfitting. Our training optimizer was Nadam29

using default parameters (except the learning rate changed to
1e-4), the loss function was binary cross entropy, the updating
metric was accuracy, the batch size was 30, and the number of
total epochs was set to be 1e+5.

The training methods of GAN are:

• Step 1: Randomly initialize all weights for both networks.

• Step 2: Input a batch of length-100 noise vectors to gen-
erator to obtain synthetic images.

• Step 3: Train the discriminator by a batch of synthetic
images labeled “0,” and real images labeled “1”.

• Step 4: To train the generator: input a batch of length-100
noise vectors to the generator to obtain synthetic images
and label them as “1.” Then, input these synthetic images
to the discriminator to obtain the predicted labels. The
differences between predicted labels and “1” will be the
loss for updating the generator. It is noteworthy that in
this step, only the weights in the generator were changed;
weights in the discriminator were fixed.

• Step 5: Repeat step 2 to step 4 until all real images have
been used once; that is one epoch. When the number of
epochs reaches a certain value, training stops.

For the step 5, the ideal situation is to stop training when the
classification accuracy of the discriminator converges to 50%.
That means the discriminator no longer can distinguish the real
images from the synthetic images generated from a well-trained
generator. The discriminator plays a role as an assistant in
GAN. After training, we used the generator neural networks to
generate synthetic images.

2.4 CNN for Classification

A CNN was designed as the discriminator in GAN. Its function
was to distinguish real and synthetic mammographic ROIs. We
also built a CNN to classify abnormal ROIs and normal ROIs,
and it was called CNN tumor classifier. As shown in Table 2,
this CNN classifier consisted of three convolutional layers with
max-pooling layers and two FC layers. The activation function
for each layer was the ReLU function except the last one for
output. The output layer used a sigmoid function, which mapped
the output value to the range [0, 1]. Its input was an image of size
320 × 320 pixels. Since the sigmoid function was used in the
output layer, the predicted outcome from the CNN classifier was
a value between 0 and 1. By default, the classification threshold
was 0.5, meaning that if the value was less than 0.5 it was
considered as “0” (normal), otherwise it was considered as “1”
(abnormal). The optimizer for training was Nadam using default
parameters30 (except the learning rate was changed to 1e-4), the
loss function was binary cross entropy, the updating metric was
accuracy, the batch size was 26, and the number of total epochs
was set to be 750.

To train this CNN classifier from scratch, we used the labeled
ROIs of abnormal and normal mammographic images. All train-
ing data included ORG ROIs, AFF ROIs, and GAN ROIs, but
validation data were only the ORG ROIs.

Table 1 The architecture of generator and discriminator neural
networks.

Layer Shape

Generator

Input: 100-length vector 100

FC_(256 × 20 × 20) + ReLU 102400

Reshape to 20 × 20 × 256 20 × 20 × 256

Normalization + Up-sampling 40 × 40 × 256

Conv_3-256 + ReLU 40 × 40 × 256

Normalization + Up-sampling 80 × 80 × 256

Conv_3-128 + ReLU 80 × 80 × 128

Normalization + Up-sampling 160 × 160 × 128

Conv_3-64 + ReLU 160 × 160 × 64

Normalization + Up-sampling 320 × 320 × 64

Conv_3-32+ ReLU 320 × 320 × 32

Normalization + Conv_3-3+ ReLU 320 × 320 × 3

Output (tanh): ½−1;1� 320 × 320 × 3

Discriminator

Input: RGB image 320 × 320 × 3

Conv_3-32 + ReLU 320 × 320 × 32

MaxPooling_2 + Dropout (0.25) 160 × 160 × 32

Conv_3-64 + ReLU 160 × 160 × 64

MaxPooling_2 + Dropout (0.25) 80 × 80 × 64

Conv_3-128 + ReLU 80 × 80 × 128

MaxPooling_2 + Dropout (0.25) 40 × 40 × 128

Conv_3-256 + ReLU 40 × 40 × 256

MaxPooling_2 + Dropout (0.25) 20 × 20 × 256

Flatten 102400

FC_1 1

Output (sigmoid): [0, 1] 1
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3 Experiment and Results
Our implementation of neural networks was on the Keras API
backend on TensorFlow.31 The development environment for
Python was Anaconda3.

3.1 Experiment Plan

In this study, we applied affine transformations and GAN to aug-
ment images and compared the two augmentation methods by
training a CNN classifier and assessing their classification accu-
racy. To the affine transformation, we first decided the padding
method (Table 3).

We collected 1300 real abnormal ROIs (Oabnorm, “O” for
original) and 1300 real normal ROIs (Onorm) in total. After with-
holding 10% for validation, there were 1170 Oabnorm and 1170
Onorm. We first augmented those data by affine transformations
to obtain 1170 Aabnorm (“A” for affine) and 1170 Anorm; the
details are shown in Sec. 2.2. For the three padding methods,
we mark the augmented data as Aconstant, Anearest, and Areflect.
Then, we trained three CNN classifiers from scratch by three
datasets: [1170 Aconstant

abnorm , 1170 Aconstant
norm ], [1170 Anearest

abnorm, 1170

Anearest
norm ] and [1170 Areflect

abnorm, 1170 Areflect
norm ] respectively. Figure 5

shows the validation accuracy of the three CNN classifiers.
Obviously, the CNN classifier trained by nearest padding AFF
ROIs has the best overall performance. Therefore, we used the
nearest padding AFF ROIs for the remaining experiments.

We then used the ORG ROIs to train two generators:
GANabnorm and GANnorm for generating GAN ROIs. As shown
in Fig. 6 (GAN box), during the training process, the generator
G provided synthetic ROIs to the discriminatorD.Dwas trained
to distinguish the real from the synthetic ROIs by using real and
synthetic ROIs. And, once synthetic ROIs were distinguished,
D gave a feedback loss to G for G’s updating. Then G will gen-
erate synthetic ROIs more like the real ones. By inputting noise
vectors to GANabnorm and GANnorm, we obtained 336 Gabnorm

and 336 Gnorm.
We repeated training the CNN classifier from scratch using

several datasets of labeled ROIs shown in Table 4. In each set,
the number of abnormal and normal ROIs was equal (Fig. 6).
We used 84 Oabnorm and 84 Onorm that were had not been used
in the training process as validation data to evaluate those CNN
classifiers.

3.2 Classification Results

For training the GAN, we used 336 real abnormal ROIs to obtain
the generator GANabnorm and used 336 real normal ROIs to
obtain the generator GANnorm. Figure 7 shows some synthetic
abnormal ROIs (Gabnorm) generated from GANabnorm. Then, we
generated 336 Gabnorm and 336 Gnorm by generators.

The results of training accuracy and validation accuracy after
each training epoch (defined in Sec. 2.3, training methods, step
5; the total epochs were 750) are shown in Fig. 8. The figures
make clear that sets 1, 4, and 5 performed well and set 3 was the
worst. To analyze those results quantitatively, we show the sta-
ble standard deviation (SStd, which is the standard deviation
of validation accuracy after 600 epochs), maximum validation
accuracy (best), average validation accuracy after 600 epochs
(stable), and time cost (in seconds) for each training epoch.
The maximum validation accuracy can indicate the best per-
formance of the classifier, but it may be reached fortuitously.
The average validation accuracy after 600 epochs can show the
stable performance of the classifier. For a good classifier, this
value will be monotone increasing and converged. And SStd
shows how validation accuracy varies from its average after
600 epochs. Table 5 shows these quantitative results.

Table 3 Notations for data.

Set name
Notation for
element Meaning

ORG ROIs Oabnorm∕Onorm Real abnormal/normal ROI

AFF ROIs Apadding
class Affine transformed ROI from

one class (abnorm = abnormal/
norm = normal) by padding
method constant/nearest/reflect

GAN ROIs Gabnorm∕Gnorm Synthetic abnormal/normal ROI
by GAN

Fig. 5 Validation accuracy of CNN classifiers trained by three types
of AFF ROIs.

Table 2 Architecture of the CNN classifier.

CNN classifier

Layer Shape

Input: RGB image 320 × 320 × 3

Conv_3-32 + ReLU 320 × 320 × 32

MaxPooling _2 160 × 160 × 32

Conv_3-32 + ReLU 160 × 160 × 32

MaxPooling _2 80 × 80 × 32

Conv_3-64 + ReLU 80 × 80 × 64

MaxPooling _2 40 × 40 × 64

Flatten 102400

FC_64 + ReLU + Dropout (0.5) 64

FC_1 1

Output (sigmoid): [0, 1] 1
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Since the maximum validation accuracy may be fortuitous,
the stable performance is a more reliable evaluation of a clas-
sifier. Table 5 demonstrates that:

• ORG ROIs must be added to the training set because the
stable performances of sets without ORG ROIs are lower
than 70%.

• By comparing set 2 with set 3, we observe that GAN-
generated images could have features closer to real images
than affine-transformed images. And, by comparing set 4
with set 5, we see that GAN ROIs are better than AFF

ROIs for image augmentation. Inspection of the synthetic
ROIs in Fig. 7 reveals some artificial components.

• Since the performance of GAN is better than affine
transformation for image augmentation, GAN could be
an alternative augmentation method for training CNN
classifiers.

For training using only real ROIs, the validation accuracy is
lower than training by adding GAN ROIs. Adding AFF ROIs
can also improve the validation accuracy. Therefore, image aug-
mentation is necessary to train CNN classifiers and since GAN
performs better than affine transformation, GAN could be a
good alternative option. But GAN ROIs may have features that
are different from ORG ROIs because overfitting occurred.
Adding ORG ROIs to the training set can help correct this prob-
lem. The images augmented by GAN or affine transformation
cannot substitute for real images to train CNN classifiers
because the absence of real images in the training set will cause
overfitting.

4 Discussion
The hypothesis of GANs is that, in d-dimensional space, there
exists a mapping function pdataðxÞ from vector x to real data y;
a GAN can learn and simulate the mapping function GðxÞ by
using samples from the distribution of real data. GðxÞ is also
called a generator. The ideal outcome is GðxÞ ¼ pdataðxÞ. The
maximum validation accuracy for training using GAN ROIs
is about 79.8%, which shows that the generator acquired some
important features from the ORG ROIs. The GAN ROIs may
also have different features from those of the ORG ROIs, and
so the stable accuracy is about 9% lower. Adding ORG ROIs in
the training set can help correct this problem.

4.1 Augmented-Images Analysis

Since abnormal ROIs may contain more features than normal
ROIs, we take a statistical view for comparing the real abnormal
ROIs and the augmented ROIs: Oabnorm, Anearest

abnorm, and Gabnorm.
For each category, we use 336 samples, compute their mean,
standard deviation (Std), skewness, and entropy. Then we plot
the normalized values of those statistics in histograms to see
their distributions. In the interest of space, we display only their
Std and mean in Fig. 9.

DDSM
Crop ROIs

Real images
84
84

20% for validation

Generator

Discriminator

Noise vector x

GAN AFF

ORG ROIs

AFF ROIs

GAN ROIs

CNN classifier Training accuracy
Validation accuracy

420 abnormal ROIs
420 normal ROIs

336
336

336
336

336
336

Training
data

Fig. 6 Flowchart of our experiment plan. CNN classifiers were trained by data including ORG, AFF,
and GAN ROIs. Validation data for the classifier were ORG ROIs that had not been used for training.
The AFF box means to apply affine transformations.

Table 4 Training plans.

Classifier
model Set# Dataset for training Validation

CNN
classifier
in Table 2

1 336 Oabnorm labeled ‘1’ 84 Oabnorm labeled ‘1’

336 Onorm labeled ‘0’ 84 Onorm labeled ‘0’

2 336 Gabnorm labeled ‘1’

336 Gnorm labeled ‘0’

3 336 Anearest
abnorm labeled ‘1’

336 Anearest
norm labeled ‘0’

4 336 Oabnorm+
336 Gabnorm labeled ‘1’

336 Onorm +
336 Gnorm labeled ‘0’

5 336 Oabnorm +
336 Anearest

abnorm labeled ‘1’

336 Onorm +
336 Anearest

norm labeled ‘0’

6 336 Gabnorm+
336 Anearest

abnorm labeled ‘1’

336 Gnorm+
336 Anearest

norm labeled ‘0’
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From the view of mean’s distribution, GAN is more like
ORG than AFF. But the view of Std’s distribution shows the
opposite. To quantitatively analyze difference between distribu-
tions, we calculate the Wasserstein distance32 between two his-
tograms. The value of the Wasserstein distance is smaller if
the difference between two distributions is smaller. Wasserstein

distance is equal to 0 when the two distributions are identical.
Table 6 shows the Wasserstein distances of ORG ROIs versus
GAN ROIs and ORG ROIs versus AFF ROIs for the four
statistical descriptors.

GAN ROIs are closer than AFF ROIs to ORG ROIs in mean
and entropy but farther in Std and skewness. Such results may

Real 

Synthetic

(a)

(b)

Fig. 7 (a) Real abnormal ROIs; (b) synthetic abnormal ROIs generated from GAN.

SStd: 0.0129

Best: 0.7857

Stable: 0.7348

Time: 7.01s/ep

SStd: 0.0165

Best 0.8512

Stable: 0.7496

Time: 10.15s/ep

SStd: 0.0245

Best 0.7321

Stable: 0.6036

Time: 4.04s/ep

SStd: 0.0381

Best 0.7976

Stable: 0.6452

Time: 4.00s/ep

SStd: 0.0212

Best 0.8155

Stable: 0.7132

Time: 9.82s/ep

SStd: 0.0193

Best 0.8095

Stable: 0.6931

Time: 6.79s/ep

Fig. 8 Training accuracy and validation accuracy for six training datasets.
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explain why GAN ROIs provide valid image augmentation.
These results also suggest improvements to the GAN: we could
modify the GAN to generate images having smaller Wasserstein
distances to real images as measured by those statistical criteria.
Actually, the most recent Wasserstein GAN33 is designed
according to a similar idea.

4.2 Related Studies

Since the introduction of GANs, they have been used widely in
many image processing applications.12 In medical imaging,
many applications of GAN are to image segmentation.19,21,34–37

Other applications are to medical image simulation/synthesis.38–42

Image synthesis is a specialty or advantage of GAN, hence, it is
apt to apply GAN as an image augmentation method43 for training
classifiers and improving their detection performances. To date,
however, there has been no study that uses GAN as a data-
augmentation method on mammograms to train a CNN classifier
for breast cancer detection. Therefore, our study fills this gap.

4.3 Problems and Future Work

Theoretically, a well-trained GAN could generate images hav-
ing the same distributions as real images. The synthetic images
will have zero Wasserstein distance to real images as measured
by any statistical criteria. In that case, the performance of a
CNN classifier trained by GAN ROIs will be as good as that
trained by ORG ROIs. Our results, however, show that based
on distribution and training performance, GAN did not meet
theoretical expectations. An explanation may be found upon

Table 5 Analysis of validation accuracy for CNN classifiers.

Set#

Best
performance

(%)

Stable
performance

(%)
SStd
(%)

Time/
epoch
(s)

1 (ORG) 78.75 73.48 1.29 7.01

2 (GAN) 79.76 64.52 3.81 4.00

3 (AFF) 73.21 60.36 2.45 4.04

4 (ORG + GAN) 85.12 74.96 1.65 10.15

5 (ORG + AFF) 81.55 71.32 2.12 9.82

6 (GAN + AFF) 80.95 69.31 1.93 6.79

Note: The stable performance (bold values) is a more reliable index to
evaluate classifiers.

Fig. 9 Histograms of mean and skewness.

Table 6 Wasserstein distance between two histograms.

Criterion

336 Oabnorm v.s.
336 Gabnorm

336 Oabnorm v.s.
336 Anearest

abnorm

Mean 0.083 0.185

Std 0.100 0.040

Skewness 0.101 0.047

Entropy 0.111 0.456

Note: The smaller distances (bold values) mean that the two distribu-
tions are closer.
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inspection of the synthetic images (Fig. 7): they have clear arti-
facts. One possible reason is that GAN adds some features or
information not belonging to real images; that is why the dis-
tributions of the four statistical criteria of the GAN ROIs are
different from those of the ORG ROIs. Those new features
cause classifiers to detect abnormal features in real images and
reduce the validation accuracy. A possible solution is to change
the architecture of the generator or/and discriminator in GAN.
In this paper, the architecture we used is DCGAN.44 Given that
∼500 architectures of GAN exist,45 we believe that some of
them can achieve a better performance for image augmentation.

In future work, we could train the classifier using transfer
learning because (in addition to data augmentation) it is another
important approach to deal with small training datasets. Since
the DDSM provides truth labels for benign and malignant
tumors, we could also perform classification for benign and
malignant ROIs instead of abnormal and normal ROIs. Also,
as noted above, we may examine performances of other archi-
tectures of GAN in terms of image augmentation.

5 Conclusion
In this paper, we applied GAN to generate synthetic mammo-
grams. GAN can be used as an image augmentation method
for training and to improve the performance of CNN classifiers.
Our results show that, to classify the normal ROIs and abnormal
(tumor) ROIs from DDSM, adding GAN-generated ROIs to
the training data can help prevent overfitting (Table 5, higher
stable performance). Another traditional image augmentation
method—affine transformation—has poorer performance than
GAN; therefore, GAN could be a preferred augmentation
option. By comparing GAN ROIs with affine-transformed
ROIs in their distributions of mean, standard deviation, skew-
ness, and entropy, we found that GAN ROIs are more similar
to real ROIs than affine transformed ROIs in terms of mean and
entropy. Our results also show that images augmented by GAN
or affine transformation cannot substitute for real images to
train CNN classifiers because the absence of real images in the
training set will cause overfitting with more training (stable per-
formances lower than 70%); in other words, augmentation must
mean just that.
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